HOME > ±³¼öÁø > ½ÅÀç»ý¿¡³ÊÁö
Çз | ¡Ü ¼¿ï´ëÇб³ ¹«±âÀç·á°øÇаú Çлç, 1995 ¡Ü ¼¿ï´ëÇб³ ¹«±âÀç·á°øÇаú ¼®»ç, 1997 ¡Ü Stanford Universiy Àç·á°øÇÐ ¹Ú»ç, 2005 |
---|---|
±âº»Á¤º¸ | ¡Ü KIST ¿¬±¸¿ø, ¼±ÀÓ-Ã¥ÀÓ¿¬±¸¿ø (2005~) ¡Ü KIST ¿¡³ÊÁö¼ÒÀ翬±¸´Ü ´ÜÀå (2019~) ¡Ü KIST °í¿Â¿¡³ÊÁöÀç·á¿¬±¸¼¾ÅÍ ¼¾ÅÍÀå (2017~2018) ¡Ü KIST School, UST ±³¼ö (2012~2019) ¡Ü KIST-ÇѾç´ë Çבּ³¼ö (2015~2017) |
³í¹® µî ¿¬±¸½ÇÀû |
¡Ü Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells, Nat. Comm, 2017
¡Ü High-Performance Protonic Ceramic Fuel Cells with 1 um Thick Y:Ba(Ce, Zr)O3 Electrolytes, Adv. Energy Mater. 2018 ¡Ü Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 ¡ÆC, Applied Energy 2019 |
±âŸ |
Çз | ¡¤ 2002~2006 °í·Á´ëÇб³ ½Å¼ÒÀç°øÇаú (°øÇйڻç) ¡¤ 2000~2002 µ¿±¹´ëÇб³ ¹ÝµµÃ¼°úÇаú (ÀÌÇм®»ç) ¡¤ 1994~2000 µ¿±¹´ëÇб³ ¹ÝµµÃ¼°úÇаú (ÀÌÇлç) |
---|---|
±âº»Á¤º¸ | ¡¤ 2020~ÇöÀç °í·Á´ëÇб³ ¿¡³ÊÁöȯ°æ´ëÇпø(±×¸°½ºÄð), ºÎ±³¼ö ¡¤ 2014~2019 °í·Á´ëÇб³ ¿¡³ÊÁöȯ°æÁ¤Ã¥±â¼ú´ëÇпø, Á¶±³¼ö ¡¤ 2018~ÇöÀç (»ç) Çѱ¹Å¾籤¹ßÀüÇÐȸ ÀÌ»ç ¡¤ 2018~ÇöÀç (ÁÖ) ¸ÞÄ«·Î ±â¼úÀÚ¹® ¡¤ 2011~2014 »ï¼º SDI, Ã¥ÀÓ¿¬±¸¿ø - CIGS ÈÇÕ¹° žçÀüÁö ¹× ¸ðµâ °³¹ß ¡¤ 2009~2011 »ï¼ºÀüÀÚ(»ï¼º Á¾ÇÕ±â¼ú¿ø, LCD »ç¾÷ºÎ), Ã¥ÀÓ¿¬±¸¿ø -½Ç¸®ÄÜ Å¾çÀüÁö °³¹ß -ž籤 ¸ðµâ ½Å·Ú¼º Ç¥ÁØ Æò°¡ ±â¼ú°³¹ß - »ï¼º±×·ì »çȸº¹Áö ÇÁ·Î±×·¥ Áß Å¾籤 ±â¼úºÎ¹® ÃѰý ¡¤ 2007~2009 »ï¼º¹°»ê ±âȹ½Ç -½ÅÀç»ý¿¡³ÊÁö »ç¾÷°³¹ß - ž籤 ¹ßÀü¼Ò °Ç¼³ ¹× ¿î¿µ -ÇØ¿Ü ¹ßÀü »ç¾÷ ±âȹ ¡¤ 2006~2007 µ¿ºÎÀÏ·ºÆ®·Î´Ð½º, ¿¬±¸¿ø -ºñÈֹ߼º ¸Þ¸ð¸® ¼ÒÀÚ °³¹ß |
³í¹® µî ¿¬±¸½ÇÀû |
¡¤ »ï¼ºÀüÀÚ - "Èĸé Á¡ Á¢ÃËÇü ½Ç¸®ÄÜ ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö" ¹ß¸íƯÇ㠺ι® ¿ì¼ö»ó
¡¤ »ï¼ºÀüÀÚ - "°íÈ¿À² Àú¿ø°¡ °áÁ¤°è ½Ç¸®ÄÜ selective emitter žçÀüÁö °³¹ß" ¿¬±¸°³¹ß ºÎ¹® ¿ì¼ö»ó ¡¤ ¼®»ç - si-nanostructureÀÇ Á¦ÀÛ ¹× memory Ư¼º¿¡ °üÇÑ ¿¬±¸ ¡¤ ¹Ú»ç - °áÁ¤¸³°èÀÇ ±¤ Àü±âÀû Ư¼º°ú µ¿ÃàÇü žçÀüÁö¿¡ °üÇÑ ¿¬±¸ <¼ö»ó> [ÇÐȸ] 2014~2020³â ¿ì¼ö³í¹®»ó 6ȸ [±¹³»] 2011³â »ï¼ºÀüÀÚ »çÀå»ó ¿¬±¸°³¹ßºÎ¹® [±¹³»] 2010³â »ï¼ºÀüÀÚ »çÀå»ó ¹ß¸íƯÇãºÎ¹® <³í¹®> žçÀüÁö ¹× ¸ðµâ ºÐ¾ß SCI(E) ³í¹® 100°Ç ÀÌ»ó |
±âŸ |
Çз | (1999~2003) ÀϺ»±¹¸³°ú±â´ë, Àü±â¡¤ÀüÀÚ°øÇкÎ, ¹Ú»ç (2003~2006) Toyota Technological Institute, Research Fellow |
---|---|
±âº»Á¤º¸ | (2006~2008) LGÀüÀÚ±â¼ú¿ø, Solar Energy ±×·ì, Ã¥ÀÓ¿¬±¸¿ø (2008~2012) (ÁÖ)½Å¼º¼Ö¶ó¿¡³ÊÁö, ±â¼ú¿¬±¸¼Ò, »ó¹«ÀÌ»ç/¿¬±¸¼ÒÀå (2013~ÇöÀç) °í·Á´ëÇб³, ±³¼ö (2018~ÇöÀç) ¿¬±¸Àç´Ü, ž籤 Àü¹®À§¿ø (2017~ÇöÀç) »ê¾÷ºÎ »ê¾÷±â¼úÇõ½ÅÆò°¡´Ü, Æò°¡À§¿ø (2006-ÇöÀç) Çѱ¹¿¡³ÊÁö±â¼úÆò°¡¿ø & ¿¡³ÊÁö°ü¸®°ø´Ü, Æò°¡À§¿ø/Ç¥ÁØÈÀ§¿ø (2012-ÇöÀç) Çѱ¹Å¾籤¹ßÀüÇÐȸ, ÀÌ»ç |
³í¹® µî ¿¬±¸½ÇÀû |
(¼ö»ó)
-(2017) GPVC DAEJOO Award -(2015) The PVSEC YOUNG SCIENTIST Award -(2011) Green Energy Award, Áö½Ä°æÁ¦ºÎ Àå°ü»ó -(2010) ±¹¹«ÃѸ® ǥâ -(2009) ¿¡³ÊÁö½Å±â¼ú°æÁø´ëȸ, Áö½Ä°æÁ¦ºÎ Àå°ü»ó (Àú¼) žçÀüÁö°øÇа³·Ð(2013³â) ¿Ü 2Æí (SCI ³í¹®): ÃÑ100Æí (Energy&Environmental Science(IF:33.250), Advanced Energy Materials(IF:24.884), Communications Chemistry (Nature ÀÚ¸ÅÁö) µî) (ƯÇã) ÃÑ 60°Ç (±¹Ã¥°úÁ¦) »ê¾÷Åë»óÀÚ¿øºÎ ¾ËŰ¹Ì½ºÆ® ÇÁ·ÎÁ§Æ® ¡°½´ÆÛ žçÀüÁö, 2019-2026, 256¾ï¡±, KU-KIST ½ºÄð»ç¾÷ ¡°¿¡³ÊÁö ¼ø»ý»ê&ȯ°æ¼øÈ¯ ¿¡Å©½ÃƼ ±¸Ãà, 2019-2023, 50¾ï¡± ¿Ü ÇöÀç 4°³ÀÇ ±¹Ã¥»ç¾÷ ¼öÇà. |
±âŸ |
Çз | 1989.03.01~1996.02.25 °í·Á´ëÇб³ ÀÌÇлç 1996.03.01~1998.02.25 °í·Á´ëÇб³ ÀÌÇм®»ç 1999.09.01~2004.07.31 Univ. of Minnesota ÀÌÇйڻç |
---|---|
±âº»Á¤º¸ | 2004.08.01~2006.03.31 Univ. of Minnesota, post-doc 2006.04.15~2009.02.28 Çѱ¹ÀüÀÚÅë½Å¿¬±¸¿ø ETRI, ¼±ÀÓ¿¬±¸¿ø(ÆÀÀå) 2009.03.01~2013.08.31 UNIST Á¶±³¼ö, ºÎ±³¼ö 2013.09.01~2019.02.28 °Ç±¹´ëÇб³ ºÎ±³¼ö, Á¤±³¼ö |
³í¹® µî ¿¬±¸½ÇÀû |
|
±âŸ |
Çз | - 1996. 3 – 2000. 2, ¼º±Õ°ü´ëÇб³, ÈÇÐÇлç - 2000. 3 – 2002. 2, Çѱ¹°úÇбâ¼ú¿ø, ÈÇм®»ç - 2005. 9 – 2011. 8, The Univ. of Chicago, ÈÇйڻç |
---|---|
±âº»Á¤º¸ | - 2002. 4 – 2004. 3, »ï¼ºÁ¾ÇÕ±â¼ú¿ø (¿¬±¸¿ø) - 2011. 9 – 2012. 8, The Univ. of Chicago (Æ÷½º´Ú) - 2012. 10 – 2017. 2, Çѱ¹°úÇбâ¼ú¿¬±¸¿ø (¼±ÀÓ¿¬±¸¿ø) - 2012. 3 – ÇöÀç, Çѱ¹°úÇбâ¼ú¿¬±¸¿ø (Ã¥ÀÓ¿¬±¸¿ø) |
³í¹® µî ¿¬±¸½ÇÀû |
|
±âŸ | - 2016.8.8. Hole Transport: Pyrite‐Based Bi‐Functional Layer for Long‐Term Stability and High‐Performance of Organo‐Lead Halide Perovskite Solar Cells.Adv. Funct. Mater. - 2016.9.15. Effect of Molecular Orientation of Donor Polymers on Charge Generation and Photovoltaic Properties in Bulk Heterojunction All‐Polymer Solar Cells. Adv. Energy Mater. - 2018.3.5. Polymer Solar Cells: High‐Performance and Uniform 1 cm2 Polymer Solar Cells with D1‐A‐D2‐A‐Type Random Terpolymers .Adv. Energy Mater. - 2018. 10. 25. Low-Temperature Processable High-Performance D–A-Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices.Adv. Energy Mater. |
Çз | |
---|---|
±âº»Á¤º¸ | |
³í¹® µî ¿¬±¸½ÇÀû |
|
±âŸ |
Çз | ¡¤1988³â ¼¿ï´ëÇб³ ÈÇаøÇаú ÇÐ»ç ¡¤1990³â ¼¿ï´ëÇб³ ÈÇаøÇаú ¼®»ç |
---|---|
±âº»Á¤º¸ | ¡¤1995³â University of Texas at Austin ÈÇаøÇаú ¹Ú»ç ¡¤1995-2003³â : LGÈÇÐ(ÁÖ) ¿¬±¸¼Ò ¿¬±¸¿ø ¡¤2010-2011³â : University of Maryland ¹æ¹®±³¼ö ¡¤2003³â - ÇöÀç : °í·Á´ëÇб³ Ȱø»ý¸í°øÇаú ±³¼ö |
³í¹® µî ¿¬±¸½ÇÀû |
¡¤Kyung Ju Lee, Muhammad Salman Maqbool, Anil Kumar Pullur, Young Eun Jeong, Kwang Ho Song, Heon Phil Ha, Vanadia-modified Sb-CeO2/TiO2 catalyst for effective removal of NO by NH3, Research on Chemical Intermediates, 41, 4, 2635, 2015
¡¤In Hak Baick, Woo Jic Yang, Yun Gyong Ahn, Kwang Ho Song, Kyu Yong Choi, Structure and Properties of Ultra-High Molecular Weight Bisphenol A Polycarbonate Synthesized by Solid-State Polymerization in Amorphous Microlayers, Journal of Applied Polymer Science, 132, 10, 2015 ¡¤B Jung, K Park, KH Song, S Lee, Continuous flow reactions in water for the synthesis of propargylamines via a metal-free decarboxylative coupling reaction, TETRAHEDRON LETT, 56, 32, 4697, 2015 |
±âŸ |
Çз | - M.S. and Ph.D. in Materials Chemistry & Engineering, Aug. 2019 Konkuk University, Korea - B.S. in Department of Materials Chemistry & Engineering, Aug. 2014 Konkuk University, Korea |
---|---|
±âº»Á¤º¸ | |
³í¹® µî ¿¬±¸½ÇÀû |
1) Yohan Ko,¢Ôa YoubinKim,¢ÔaChanyongLeea,YechanKima,ByoungKounMina,YongJuYun*band Yongseok Jun*a ACS Applied Eenrgy Materials, 2019, under revision 2) Yohan Ko, Youbin Kim, Chanyong Lee, Yechan Kim, Yongseok Jun* Synthetic Metals, 249, 2019, 47–51 3) Yohan Ko,¢Ô Chanyong Lee,¢Ô Youbin Kim, Yechan Kim, Yong Ju Yun and Yongseok Jun* J. Mater. Chem. A, 2018, 6, 20695-20701. Appeared as a back cover. 4) Yohan Ko,¢Ô Yechan Kim,¢Ô Chanyong Lee, Youbin Kim, and Yongseok Jun* ACS Appl. Mater. Interfaces, 2018, 10, 11633−11641. 5) Yohan Ko, Yechan Kim, Seong Young Kong, Sakeerali Cheeran Kunnana and Yongseok Jun* Solar Energy Materials and Solar Cells, 183, 2018, 157–163 6) Yohan Ko, Yeong Rim Kim, Haneol Jang, Chanyong Lee, Man Gu Kang and Yongseok Jun* Nanoscale Research Letters, 2017, 12:498 7) Yohan Ko, Woo Yeol Choi, Yong Ju Yun and Yongseok Jun* Nanoscale, 2017, 9, 9396-9403 8) M. Lee¢Ô, Yohan Ko¢Ô and Yongseok Jun* J. Mater. Chem. A, 2015, 3, 19310-19313. Appeared as a back cover. |
±âŸ |
Çз | |
---|---|
±âº»Á¤º¸ | |
³í¹® µî ¿¬±¸½ÇÀû |
|
±âŸ |
Çз | ¡¤ 1989-1996 °í·Á´ëÇб³ ÈÇаú ÇÐ»ç ¡¤ 1996-1998 °í·Á´ëÇб³ ÈÇаú ¼®»ç ¡¤ 1999-2004 Texas A&M University ÈÇаú ¹Ú»ç |
---|---|
±âº»Á¤º¸ | ¡¤ 2004.2-2004.3 Tokyo University ÈÇаú ¹æ¹®¿¬±¸¿ø ¡¤ 2004.6-2006.8 Harvard University ÈÇаú Post-doc fellow ¡¤ 2006.9-2011.2 KIST ¼±ÀÓ¿¬±¸¿ø ¡¤ 2007-ÇöÀç °úÇбâ¼ú¿¬ÇÕ´ëÇпø(UST) ±³¼ö ¡¤ 2011.3-ÇöÀç KIST Ã¥ÀÓ¿¬±¸¿ø ¡¤ 2013.04-ÇöÀç KU-KIST Çבּ³¼ö ¡¤ Çѱ¹±¤°úÇÐȸ ÀÌ»ç(2012-ÇöÀç) ¡¤ Çѱ¹Àü±âÈÇÐȸ ÀÌ»ç(2012-ÇöÀç) |
³í¹® µî ¿¬±¸½ÇÀû |
¡¤ Solution processed high band-gap CuInGaS2 thin film for solar cell applications, Progress in Photovoltaics: Research and Applications (2013).
¡¤ Water splitting for hydrogen production using a high surface area RuO2 electrocatalyst synthesized in supercritical water, International Journal of Hydrogen Energy (2013). ¡¤ Fabrication of nanocrystal ink based superstrate-type CuInS2 thin film solar cells, Nanotechnology (2012). ¡¤ Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications, ACS Applied Materials & Interfaces (2012). ¡¤ Size-dependent electrocatalytic activities of printed Co3O4 films for a monolithic photovoltaic-electrolytic hydrogen generation system, International Journal of Hydrogen Energy (2011). ¡¤ Nearly carbon-free printable CIGS thin films for solar cell applications, Solar Energy Materials & Solar Cells (2011). ¡¤ Printed Co3O4 film as an electrocatalyst for hydrogen production by a monolithic photovoltaic-electrolysis system, International Journal of Hydrogen Energy (2011). |
±âŸ | ¡¤ ±¤Àü±âÈÇÐÀû CO2 Àüȯ±â¼ú°³¹ß(2011-ÇöÀç) ¡¤ ¹úÅ© ÇìÅ×·Î Á¢ÇÕ ¹«±â¹Ú¸· žçÀüÁö Á¦Á¶ ¿øÃµ±â¼ú°³¹ß(2009-ÇöÀç) ¡¤ ÆäÀ̽ºÆ®¸¦ ÀÌ¿ëÇÑ CIGS ±¤Èí¼öÃþ ¹Ú¸· Á¦Á¶±â¼ú °³¹ß(2009-ÇöÀç) |
Çз | ¡Ü °í·Á´ëÇб³ ¹°¸®Çаú Çлç 1991 ¡Ü ¼°´ëÇб³ ¹°¸®Çаú ¼®»ç 1995 ¡Ü ¼°´ëÇб³ ¹°¸®Çаú ¹Ú»ç 1997 |
---|---|
±âº»Á¤º¸ | ¡Ü 2006-2008 Çѱ¹Ç¥ÁذúÇבּ¸¿ø KRISS ¹Ú»çÈÄ¿¬±¸¿ø (2006-2008) ¡Ü 2008-2013 Çѱ¹ÀüÀÚÅë½Å¿¬±¸¿ø ETRI ¼±ÀÓ¿¬±¸¿ø (2008-2013) ¡Ü 2016-2020 °Ç±¹´ëÇб³ ¹Ì·¡¿¡³ÊÁö°øÇаú Á¶±³¼ö (2016-2020) |
³í¹® µî ¿¬±¸½ÇÀû |
¡Ü Hyun Joo Lee, Chanyong Lee, Juhee Song, Yong Ju Yun, Yongseok Jun, Chil Seong Ah ¡°Electrochromic devices based on ultraviolet-cured poly(methyl methacrylate) gel electrolytes and their utilisation in smart window applications¡± J. Mater. Chem. C, 8, 8747 (2020) Corresponding author. *Back cover feature article for the July issue of J. Mater. Chem. C.
¡Ü Yong Ju Yun, Hyun Joo Lee, Tae Hyeong Son, Hyeontae Son, Yongseok Jun ¡°Mercerization to enhance flexibility and electromechanical stability of reduced graphene oxide cotton yarns¡± Composite Science Technology, 184, 107845 (2019) Corresponding author. ¡Ü Hee Yeon Yang, Yongseok Jun, Yong Ju Yun ¡°Ultraviolet response of reduced graphene oxide/natural cellulose yarns with high flexibility¡± Composites Part B:Engineering, 163, 710-715 (2019). Corresponding author ¡Ü Yong Ju Yun, Soon-Jung Park, Joseph Seo, Yun-Ho Song, Dong Han Ha, Hyung-Min Chung, Yongseok Jun, Sung-Hwan Moon ¡°Cellular organization of three germ layer cells on different types of noncovalent functionalized graphene substrates¡± Materials Science and Engineering C-Materials for Biological Applications, 103 109729 (2019). First author. ¡Ü Chil-Hyoung Lee, Yong Ju Yun, Lee Hyunjin, Lee Kyu Seung, Joong Hee Lee, Mira park, Hakyong Kim, Dong Ick Son, ¡°Environment-friendly, durable, electro-conductive, and highly transparent heaters based on silver nanowire functionalized keratin nanofiber textile¡± J Mater Chem C (2018). Co-first author ¡Ü Yong Ju Yun, Do Yeob Kim, Won G. Hong, Dong Han Ha, Yongseok Jun, Hyung-Kun Lee ¡°Highly stretchable, mechanically stable, and weavable reduced graphene oxide yarns with high NO2sensitivity for wearable gas sensors¡± RSC advances, 8, 7615-7621 (2018). First author ¡Ü Hyung Ju Park, Wan-Joong Kim, Hyung Kun Lee, Dae-Sik Lee, Jong-Ho Shin, Yongseok Jun, Yong Ju Yun, ¡°Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics¡± Sensors & Actuators B: Chemical, 257, 846-852 (2018). Corresponding author ¡Ü Yong Ju Yun, Do Yeob Kim, Won G. Hong, Dong Han Ha, Yongseok Jun, Hyung-Kun Lee ¡°Highly stretchable, mechanically stable, and weavable reduced graphene oxide yarns with high NO2 sensitivity for wearable gassensors¡± RSC advances, 8, 7615-7621 (2018). First author ¡Ü Yong Ju Yun, Won G. Hong, Do Yeob Kim, Hae Jin Kim, Yongseok Jun, Hyung-Kun Lee ¡°E-textile gas sensors composed of molybdenum disulfide and reduced graphene oxide for high response and reliability¡± Sensors & Actuators B: Chemical, 248, 829-835 (2017). First author ¡Ü Hyung Ju Park, WanJoong Kim, Chil Seong Ah, Yongseok Jun, Yong Ju Yun ¡°Solution-processed Au-Ag core-shell nanoparticle-decorated yarns for human motion monitoring¡± RSC Advances, 7, 10539-10544 (2017). Corresponding author ¡Ü Yong Ju Yun, Jongil Ju, Joong Hoon Lee, Sung-Hwan Moon, Soon-Jung Park, Young Heon Kim, Won G. Hong, Dong Han Ha, Heeyeong Jang, Geon Hui Lee, Hyung-Min Chung, Jonghyun Choi, SungWoo Nam, Sang-Hoon Lee, Yongseok Jun ¡°Highly elastic graphene-based electronics toward electronic skin¡± Advanced Functional Materials, 27, 1701513 (2017). First author ¡Ü Yong Ju Yun, Chil Seong Ah, Won G. Hong, Hae Jin Kim, Jong-Ho Shin, Yongseok Jun, ¡°Highly conductive and environmentally stable gold/graphene yarns for flexible and wearable electronics¡± Nanoscale, 9, 11439-11445 (2017). Corresponding author ¡Ü Dong Han Ha, Suyong Jung, Ho-Jong Kim, Daehee Kim, Wan-Joong Kim, Sam Nyung Yi, Yongseok Jun, Yong Ju Yun ¡°Transition of graphene oxide-coated fiber bundles from insulator to conductor by chemical reduction¡± Synthetic Metals, 204, 90-94 (2015). Corresponding author ¡Ü Yong Ju Yun, Won G. Hong, Nak-Jin Choi, Byung Hoon Kim, Yongseok Jun, and Hyung-Kun Lee ¡°Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor¡±, Scientific Reports, 5:10904 (2015). First author ¡Ü Yong Ju Yun, Won G. Hong, Nak-Jin Choi, Hyung Ju Park, Byung Hoon Kim, Seung Eon Moon, Ki-Bong Song, and Hyung-Kun Lee ¡°3D scaffold of reduced graphene oxide for ultra-sensitive gas sensor¡± Nanoscale, 6, 6511-6514 (2014). First author ¡Ü Yong Ju Yun, Won G. Hong, Wan-Joong Kim, Yongseok Jun, Byung Hoon Kim, ¡°A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics¡± Advanced Materials, 25, 5701-5705 (2013). First author |
±âŸ | ƯÇã 1. À±¿ëÁÖ, Àü¿ë¼® ¡° ÀüÀÚ¼¶À¯ ¹× ÀÌÀÇ Á¦Á¶¹æ¹ý¡± 2016³â 6¿ù 24ÀÏ µî·Ï (±¹³»Æ¯Çã µî·Ï¹øÈ£: Á¦10-1635171È£) 2. À±¿ëÁÖ, Àü¿ë¼® ¡°°í½ÅÃ༺ ȯ¿ø ±×·¡ÇÉ »êȹ° À¯ÇØ °¡½º ¼¾¼ÀÇ Á¦Á¶ ¹æ¹ý ¹× ÀÌ¿¡ ÀÇÇØ Á¦Á¶µÈ °¡½º ¼¾¼¡± 2018³â 1¿ù 24ÀÏ µî·Ï (±¹³»Æ¯Çã µî·Ï¹øÈ£: Á¦10-1823771È£) 3. À±¿ëÁÖ, Àü¿ë¼® ¡°°í°¨µµ °¨Áö ¼¾¼ÀÇ Á¦Á¶ ¹æ¹ý ¹× ÀÌ¿¡ ÀÇÇØ Á¦Á¶µÈ °í°¨µµ °¨Áö ¼¾¼¡± 2018³â 1¿ù 24ÀÏ µî·Ï (±¹³»Æ¯Çã µî·Ï¹øÈ£: Á¦10-1823793È£) ¿¬±¸ °úÁ¦ ¡Ü À̰øÇÐ °³ÀαâÃÊ ¿¬±¸°úÁ¦ (2018³â ~ 2022³â) Çѱ¹¿¬±¸Àç´Ü °úÁ¦¸í: 2Â÷¿ø ³ª³ë ¼ÒÀç ÀÌÁ¾ ±¸Á¶Ã¼ ±â¹Ý °í¼º´É ¿þ¾î·¯ºí »ýü ½ÅÈ£ ÃøÁ¤ ½Ã½ºÅÛ °³¹ß ¡Ü ±¹Á¦ °øµ¿ ±â¼ú °³¹ß »ç¾÷ °úÁ¦ (2018³â~ 2020³â) Çѱ¹»ê¾÷±â¼úÁøÈï¿ø °úÁ¦¸í: ±×·¡ÇÉ ±â¼ú ±â¹Ý ¿¡³ÊÁö ÀúÀå¿ë °íÈ¿À² ½Ã½ºÅÛ °³¹ß ¡Ü ADD °úÁ¦ (2020³â~2025³â) ±¹¹æ°úÇבּ¸¼Ò °úÁ¦¸í: ÀÚÀ² ±ºÁýµå·Ð ÀÓ¹«ÅëÁ¦¸¦ À§ÇÑ °í½Å·Úµµ ºñħ½À BCI ¼¾¼ ¹× ÀÀ¿ë ±â¼ú |
Çз | ¡Ü University of Hamburg, Vordiplom (Çлç), 1996 ¡Ü University of Hamburg, Diplom (Çлç), 1999 ¡Ü University of Hamburg, Dr. rer. nat. (¹Ú»ç), 2003 |
---|---|
±âº»Á¤º¸ | ¡Ü University of Hamburg, scientific staff (2002~2005) ¡Ü LG Chem/Research Park, °úÀå (2005~2007) ¡Ü Sartorius, developer (2007) ¡Ü Paul Scherrer Institute, ¼±ÀÓ¿¬±¸¿ø (2008~2009) ¡Ü KIST ¿¬±¸¿ø, ¼±ÀÓ-Ã¥ÀÓ¿¬±¸¿ø (2009~) ¡Ü KIST School, UST ±³¼ö,°âÀӺα³¼ö- ÀüÀÓ±³¼ö (2011~) |
³í¹® µî ¿¬±¸½ÇÀû |
¡Ü Polybenzimidazole membranes for Vanadium Redox Flow Batteries: Effect of sulfuric acid doping conditions, Chem. Eng. J., 2022, 435, 134902; https://doi.org/10.1016/j.cej.2022.134902
¡Ü PBI nanofiber mat-reinforced anion exchange membranes with covalently linked interfaces for use in water electrolysers, J. Membr. Sci., 2021, 640, 119832; https://doi.org/10.1016/j.memsci.2021.119832 ¡Ü Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis, J. Electrochem. Energy Conv. Storage, 2021, 18, 024001; https://doi.org/10.1115/1.4047963 ¡Ü Polybenzimidazole / tetrazole-modified poly(arylene ether) blend membranes for high temperature proton exchange membrane fuel cells, J. Membr. Sci., 2020, 614, 118494; https://doi.org/10.1016/j.memsci.2020.118494 |
±âŸ |
Çз | |
---|---|
±âº»Á¤º¸ | |
³í¹® µî ¿¬±¸½ÇÀû |
|
±âŸ |
Çз | ¡¤ 1985.9 - 1991.3 Auburn Univ.(¹Ì) ÈÇаøÇÐ ¹Ú»ç ¡¤ 1980.3 - 1982.2 ¼¿ï´ëÇб³ ÈÇаøÇÐ ¼®»ç ¡¤ 1976.3 - 1980.2 ¼¿ï´ëÇб³ ÈÇаøÇÐ Çлç |
---|---|
±âº»Á¤º¸ | ¡¤ 1991.11 - Çѱ¹°úÇбâ¼ú¿¬±¸¿ø ±¹°¡±â¹Ý±â¼ú¿¬±¸º»ºÎ ¼±ÀÓ/Ã¥ÀÓ¿¬±¸¿ø ¡¤ 1991.4 - 1991.6 Auburn Univ. ÈÇаøÇаú ¿¬±¸Á¶±³ ¡¤ 1982.10 - 1985.7 Çѱ¹°úÇбâ¼ú¿ø ¹ÝÀÀ°øÇבּ¸½Ç ¿¬±¸¿ø |
³í¹® µî ¿¬±¸½ÇÀû |
¡¤ ¹Ú¿µÀÏ, ±èµ¿È¯, ¼°æ¿ø, Á¤ÁõÇö, ±èÈ«°ï, \"ÀüÂø¹ýÀ» ÀÌ¿ëÇÑ CuInSe2 ¹Ú¸·Å¾çÀüÁö ±¤È°¼ºÃþÀÇ Á¶¼º Á¶Àý\", J.KIEEME, 26(3), 232 (2013)
¡¤ Hana Lee, Wonjoo Lee, Jin Young Kim, Min Jae Ko, Kyungkon Kim, Kyungwon Seo, Doh-Kwon Lee, Honggon Kim, \"\"Highly dense and crystalline CuInSe2 thin films prepared by single bath electrochemical deposition\"\", Electrochimica Acta 87, 450 (2013) |
±âŸ | ¡¤ ¹«°øÇØ ¿¡³ÊÁö »ý»êÀ» À§ÇÑ Å¾籤º¯È¯ ¿øÃµ±â¼ú°³¹ß(±âÃʱâ¼ú¿¬±¸È¸ Çùµ¿¿¬±¸»ç¾÷) |
Çз | ¡¤ ¼¿ï´ëÇб³ ÈÇаøÇаú Çлç (1982. 02.) ¡¤ Çѱ¹°úÇбâ¼ú¿ø ÈÇаøÁ¤°øÇаú ¼®»ç (1984. 02.) ¡¤ Çѱ¹°úÇбâ¼ú¿ø ÈÇаøÇаú ¹Ú»ç (1991. 08.) |
---|---|
±âº»Á¤º¸ | ¡¤ Çѱ¹°úÇбâ¼ú¿¬±¸¿ø Ã¥ÀÓ¿¬±¸¿ø, ûÁ¤±â¼ú¿¬±¸¼¾ÅÍÀå, ûÁ¤¿¡³ÊÁö¿¬±¸¼¾ÅÍÀå ¡¤ ¹Ì±¹ Ä«³×±â¸á·Ð´ëÇб³ post-doc ¡¤ ÀϺ» µ¿°æ´ëÇб³ »ý»ê±â¼ú¿¬±¸¼Ò Ãʺù¿¬±¸¿ø ¡¤ ¹Ì±¹ ³ëÆ®¸£´ã´ëÇб³ Ãʺù¿¬±¸¿ø ¡¤ Çѱ¹ÈÇаøÇÐȸ Ãѹ«ÀÌ»ç, Ã˸źι®À§¿øÈ¸ À§¿øÀå ¡¤ Çѱ¹Ã»Á¤±â¼úÇÐȸ Ãѹ«ÀÌ»ç, Á¶Á÷ÀÌ»ç, »ç¾÷ÀÌ»ç |
³í¹® µî ¿¬±¸½ÇÀû |
¡¤ \"Highly durable Pt-supported niobia?silica aerogel catalysts in the aqueous-phase hydrodeoxygenation of 1-propanol,\" Catal. Comm. 29, 40-47 (2012) ¿Ü ´Ù¼ö
|
±âŸ | ¡¤ \"¸ñÁú°è ¹ÙÀÌ¿À¸Å½ºÀÇ ÅëÇÕÀû Ȱ¿ë¿¡ ÀÇÇÑ Â÷¼¼´ë ¿¬·á/¼ÒÀç »ý»ê±â¼ú °³¹ß\" ±âÃʱâ¼ú¿¬±¸È¸ CAP(âÁ¶Àû À¶ÇÕ¿¬±¸) ¿Ü ´Ù¼ö |
Çз | °í·Á´ëÇб³ Àç·á°øÇкΠÇÐ»ç °¡Ãµ´ëÇб³ ÀüÀÚ°è»êÇÐ ¼®»ç °í·Á´ëÇб³ ½Å¼ÒÀç°øÇÐ ¹Ú»ç |
---|---|
±âº»Á¤º¸ | Çѱ¹ÀüÀÚ±â¼ú¿¬±¸¿ø Post-Doc ½º¸¶Æ®¸¶Àεå(ÁÖ) ¿¬±¸¼ÒÀå °í·Á´ëÇб³ ¿¡³ÊÁöȯ°æ´ëÇпø °âÀÓ±³¼ö |
³í¹® µî ¿¬±¸½ÇÀû |
Wonwook Oh et al., Analysis of the impact of power loss due to snail trails in a 95-kWp photovoltaic power system, Microelectronics Reliability, 2021.7.
Wonwook Oh et al., Evaluation based on performance and failure of PV system in 10 years field-aged 1 MW PV power plant, Microelectronics Reliability, 2020.7.
Wonwook Oh et al., Analysis of degradation in 25-year-old field-aged crystalline silicon solar cells, Microelectronics Reliability, 2019.11.
Wonwook Oh et al., Improving the Outdoor Performance of Silicon Photovoltaic Modules Using Ambient-Curing Antireflective Coatings, Journal of Nanoelectronics and Optoelectronics, 2018.12.
Wonwook Oh et al., Initial Detection of Potential-Induced Degradation using Dark I–V Characteristics of Crystalline Silicon Photovoltaic Modules in the Outdoors, Microelectronics Reliability, 2018.9.
Wonwook Oh et al., Anti-reflection and Anti-soiling Field Performance of Coated Photovoltaic Modules, Nanoscience and Nanotechnology Letters, 2018.4.
Wonwook Oh et al., Field degradation prediction of potential induced degradation of the crystalline silicon photovoltaic modules based on accelerated test and climatic data, Microelectronics Reliability, 2017.7.
Changwoon Han et al., Reliability-based structural optimization of 300 300 mm2 dye-sensitized solar cell module, Solar Energy, 2017.6.
Soohyub Bae et al., Potential induced degradation of n-type crystalline silicon solar cells with p+ front junction, Energy Science & Engineering, 2017.1
»ê¾÷Åë»êÀÚ¿øºÎ ¾ËŰ¹Ì½ºÆ® ÇÁ·ÎÁ§Æ®, È®ÀåµÈ Åõ¸ížçÀüÁö Ç÷§Æû
»ê¾÷Åë»óÀÚ¿øºÎ ¿¡³ÊÁö±â¼ú°³¹ß»ç¾÷, e-mobility ÀÚ¿øÀ» Ȱ¿ëÇÑ plus DR »ç¾÷È ¹× VPP »ç¾÷ÀÚÀÇ ÃÖÀûÀÔÂû ¼Ö·ç¼Ç °³¹ß
°úÇбâ¼úÁ¤º¸Åë½ÅºÎ, ž籤 ½º¸¶Æ® ÀιöÅÍÀÇ °ÇÀü¼º ¿¹Ãø ¹× °ü¸®¸¦ À§ÇÑ µðÁöÅÐ Æ®·£½ºÆ÷¸ÞÀÌ¼Ç ¹× ÀΰøÁö´É ±â¹Ý °íÀåÁø´Ü ¼Ö·ç¼Ç °³¹ß
|
±âŸ |
Çз | ¡ÜÇѱ¹°úÇбâ¼ú¿ø ½Å¼ÒÀç°øÇаú ¹Ú»ç, 2015 ¡ÜÇѱ¹°úÇбâ¼ú¿ø ½Å¼ÒÀç°øÇаú ¼®»ç, 2011 ¡Ü°í·Á´ëÇб³ ½Å¼ÒÀç°øÇаú Çлç, 2009 |
---|---|
±âº»Á¤º¸ | ¡ÜKIST ûÁ¤¿¡³ÊÁö¿¬±¸¼¾ÅÍ ¼±ÀÓ¿¬±¸¿ø 2018~ ¡ÜUniversity of Wisconsin-Madison ¹Ú»çÈÄ¿¬±¸¿ø 2015~2018 |
³í¹® µî ¿¬±¸½ÇÀû |
¡ÜCu(In,Ga)(S,Se)2 Photocathodes with a Grown-In CuxS Catalyst for Solar Water Splitting
ACS Energy Letters 2019
¡ÜGeneral technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation Nature communications 2019 ¡ÜProgress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting Chemical Society Reviews 2019 ¡ÜEnhancing long-term photostability of BiVO 4 photoanodes for solar water splitting by tuning electrolyte composition Nature Energy 2018 ¡ÜEnergy States of a Core‐Shell Metal Oxide Photocatalyst Enabling Visible Light Absorption and Utilization in Solar‐to‐Fuel Conversion of Carbon Dioxide Advanced Energy Materials, 2016 |
±âŸ |
Çз | |
---|---|
±âº»Á¤º¸ | |
³í¹® µî ¿¬±¸½ÇÀû |
|
±âŸ |
Çз | |
---|---|
±âº»Á¤º¸ | |
³í¹® µî ¿¬±¸½ÇÀû |
|
±âŸ |
Çз | ¼¿ï´ëÇб³ ÀÀ¿ëÈÇкÎ(ÈÇлý¹°°øÇкÎ) Çлç, 1999 ¼¿ï´ëÇб³ ÀÀ¿ëÈÇкÎ(ÈÇлý¹°°øÇкÎ) ¼®»ç, 2001 University of Minnesotaat Twin Cities ÈÇаøÇÐ ¹Ú»ç, 2006 |
---|---|
±âº»Á¤º¸ | University of Californiaat Berkeley ¹Ú»çÈÄ¿¬±¸¿ø (2006~2010) KIST ¼±ÀÓ/Ã¥ÀÓ¿¬±¸¿ø (2010~) UST-KIST½ºÄð ±³¼ö/¿¡³ÊÁöȯ°æÀ¶ÇÕÀü°øÃ¥ÀÓ±³¼ö (2011~) |
³í¹® µî ¿¬±¸½ÇÀû |
One-potselective production of deoxygenated monomeric, dimeric, and trimerichydrocarbons from xylose-derived 2-methylfuran using multifunctionaltungstate-zirconia-supported Ru, Pd, and Ni catalysts, Chem. Eng. J. 2022
Hybridcatalysts containing Ba, Ti, Mn, Na, and W for the low-temperature oxidativecoupling of methane, Appl. Catal. B 2021
Production ofdeoxygenated high carbon number hydrocarbons from furan condensates:Hydrodeoxygenation of biomass-based oxygenates, Chem. Eng. J. 2019
|
±âŸ |